Report Contents

1. Coriell Personalized Medicine Collaborative Research Study Report. This report includes all data included in the clinical report as well as supplemental interpretations and educational material. This research report is based on Questionnaires Finalized on 08/01/2010

2. Clinical Report. This report was generated and approved by Coriell's CLIA certified genotyping laboratory.
CPMC Research Study Report

Name: NATAIE DEMO Gender: Female
Date of Birth: Date Collected: 11-30-2016
Coriell ID: DEMONAT Date Received: 11-30-2016
Lab Accessioning Number: DEMONAT Date of Report: 09-08-2015
Ordering Physician: Dr. Edward Viner

Risk of Developing Vitamin D Insufficiency Based on:

- CPMC Vitamin D Insufficiency Variant 1 (rs12785878)

The CPMC is a research study investigating the utility of personalized genomic information on health and health behavior. Most common health conditions are caused by an interaction between multiple genetic variants and non-genetic risk factors such as lifestyle and environment. The genetic variant risk in this report is based on one genetic variant, but does not represent your complete genetic risk for developing vitamin D insufficiency. These results were generated as part of this research study in a CLIA-approved laboratory.

More information about the study, how to interpret CPMC results, and how we calculate risk is available on our website http://cpmc.coriell.org or by contacting our genetic counselor. Participants may schedule an appointment with our board-certified genetic counselor through the web portal by clicking on "request an appointment". Our genetic counselor also can be reached by email at cpmgcgc@coriell.org or by phone at 888-580-8028.

This research report includes all data included in the clinical report as well as supplemental interpretations and educational material. Please see the report that follows for the official clinical report.
Genetic Variant Result, Details and Population Data

Vitamin D Insufficiency

Risk factors may be related to each other and risk estimates cannot be combined.
This graph provides a summary of the relative risk for one genetic variant.

You reported you are a woman, between 31 and 50 years old; an estimated 24 in 100 women in your age group have vitamin D insufficiency.

<table>
<thead>
<tr>
<th>Chart Color</th>
<th>Relative Risk Due To:</th>
<th>Your Risk</th>
<th>Minimum Risk</th>
<th>Maximum Risk</th>
<th>Interpretation</th>
</tr>
</thead>
</table>
| Genetic Variant | 1.21 | 1.00 | 1.42 | | You have 1 copy of the non-risk variant and 1 copy of the risk variant. Based on this result, you are 21% more likely (or 1.21 times as likely) to develop vitamin D insufficiency as someone with no copies of this variant.

Having this risk variant contributes to your risk of developing vitamin D insufficiency.
Vitamin D Insufficiency

Risk Due To Genetic Variant #1 (rs12785878)

Your Result: 1 copy of the non-risk variant and 1 copy of the risk variant were detected (TG)

Non-Risk Variant = T Risk Variant = G

<table>
<thead>
<tr>
<th>Chart Color</th>
<th>Your Risk</th>
<th>Minimum Risk</th>
<th>Maximum Risk</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.21</td>
<td>1.00</td>
<td>1.42</td>
<td>You have 1 copy of the non-risk variant and 1 copy of the risk variant. Based on this result, you are 21% more likely (or 1.21 times as likely) to develop vitamin D insufficiency as someone with no copies of this variant. Having this risk variant contributes to your risk of developing vitamin D insufficiency.</td>
</tr>
</tbody>
</table>

Genetic Variant Risk is based on the number of copies of this genetic risk variant.

People with one or two copies of the risk variant are compared to people with no copies of the risk variant to determine relative risk.

A relative risk greater than 1.00 indicates an increased risk.

These results are based on a single study.
Vitamin D Insufficiency - Variant #1 (rs12785878)

We all have 2 copies of every gene, one from each of our parents. Each copy may have small changes called genetic variants. Some genetic variants are associated with an increased risk of disease. Some genetic variants are associated with a decreased risk of disease.

Having one or two copies of this variant increases your risk for vitamin D insufficiency.

How Common Is This Variant?

Non-Risk Variant = T
Risk Variant = G

<table>
<thead>
<tr>
<th>TT - 17 in 100 people have 2 copies of the non-risk variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG - 36 in 100 people have 1 copy of the non-risk variant and 1 copy of the risk variant</td>
</tr>
<tr>
<td>GG - 47 in 100 people have 2 copies of the risk variant</td>
</tr>
</tbody>
</table>

This data is based on studies in worldwide populations.

Gene: NADSYN1
Chromosome: 11q13.4
Causes
Genetic vs. Non-Genetic Risk Factors

Vitamin D insufficiency can be caused by both genetic factors and non-genetic (or environmental) risk factors.

It is estimated that non-genetic factors (like sun exposure) account for about 57% of the risk for vitamin D insufficiency.

It is estimated that 43% of the risk for vitamin D insufficiency is based on genetic risk factors. This estimate accounts for both known and unknown gene variants.

There are many different genetic and non-genetic risk factors that contribute to the risk of vitamin D insufficiency. We are only able to tell you about 1 genetic risk factor for vitamin D insufficiency at this time.
Age and gender contribute to your risk of vitamin D insufficiency.

You reported you are a woman, between 31 and 50 years old; an estimated 24 in 100 women in your age group have vitamin D insufficiency.
Limitations

Vitamin D Insufficiency

- These results alone do NOT diagnose vitamin D insufficiency. Vitamin D insufficiency must be diagnosed by your health care provider.
- This result does NOT mean that you have or will absolutely develop vitamin D insufficiency.
- This result does NOT mean that you will not develop vitamin D insufficiency in the future.
- This result ONLY assesses your risk for developing vitamin D insufficiency due to the factors presented in this report and does not mean that other genetic variants or risk factors for vitamin D insufficiency are present or absent.
- Personal risk factors, such as age, family history or lifestyle, may have a greater impact on your risk to develop vitamin D insufficiency than any individual genetic variant.
- Risk estimates are based on current available scientific literature.
- Although rare, it is possible that you may receive an incorrect result; 100% accuracy of reported results cannot be guaranteed.
- Occasionally there may be a specific variant on a gene chip that is not able to be read or interpreted. In this case you will not receive a result for that variant. It is expected that you will receive results for about 95% of variants approved by the ICOB.
- Relative risks used to estimate risk of disease for CPMC participants are based on groups of people with the same risk or protective factor as the individual CPMC participant. In some cases, the relative risk is estimated based upon an odds ratio and known or assumed disease prevalence.
- Separate risk estimates for each risk or protective factor have been given. Risk or protective factors may be related to each other and risk estimates cannot be combined.
- Risk information for non-genetic factors is based on information you provided in your medical, family, lifestyle questionnaire. If you did not provide answers or if you answered “do not know”, risk estimates for some factors may not be available.
- Risk information for non-genetic factors is based on information you provided in your medical, family, lifestyle questionnaire and may not be reflective of your current risk if any of these factors have changed. You will be given the opportunity to update your medical, family and lifestyle questionnaire responses periodically.
- Every effort will be made to provide you with risk information based on your reported race/ethnicity. However, data may not be available for all races/ethnicities for all risk factors. Please see your individual results to determine which race/ethnicity the data given is based on.
Methods

Vitamin D Insufficiency

This condition and genetic variant were approved by the Informed Cohort Oversight Board (ICOB)

Test Methodology
Saliva samples were collected using Oragene DNA Collection Kits (DNA Genotek) and DNA was extracted manually according to the manufacturer's instructions. Purified DNA was quantified using UV absorbance at 260 nm. Five hundred nanograms of the resulting DNA from each sample were used as template in the Affymetrix Genome-Wide Human SNP Nsp/Sty 6.0 GeneChip assay. Data analysis was performed using Affymetrix Genotyping Console software.

See CPMC Technical Paper for genetic variant selection and reporting methodology.

[Risk interpretation based on Coriell’s Vitamin D Insufficiency Risk Algorithm Version 1 (September 1, 2015)]

Clinical Report for Vitamin D Insufficiency Genetic Variant 1 (rs12785878)

<table>
<thead>
<tr>
<th>Name</th>
<th>NATALIE DEMO</th>
<th>Sample Type:</th>
<th>Saliva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race/Ethnicity</td>
<td>Black or African-American</td>
<td>Gender:</td>
<td>Female</td>
</tr>
<tr>
<td>Date of Birth</td>
<td></td>
<td>Date Collected:</td>
<td>11-30-2016</td>
</tr>
<tr>
<td>Coriell ID</td>
<td>DEMONAT</td>
<td>Date Received:</td>
<td>11-30-2016</td>
</tr>
<tr>
<td>Lab Accessioning Number</td>
<td>DEMONAT</td>
<td>Date of Report:</td>
<td>09-08-2015</td>
</tr>
<tr>
<td>Ordering Physician</td>
<td>Dr. Edward Viner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name of Gene/Region: NADSYN1 Chromosomal Location: 11q13.4

<table>
<thead>
<tr>
<th>Variants tested</th>
<th>Result</th>
<th>Reference Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs12785878</td>
<td>TG</td>
<td>TT</td>
</tr>
</tbody>
</table>

Interpretation

Individuals with this result are 21% more likely (or 1.21 times as likely) to develop vitamin D insufficiency as someone with no copies of this variant.

These risk estimates are based on a study in a European population. When race/ethnicity specific risk estimates are not available, risk estimates based on Caucasian populations are provided.

Other Risks

Other genetic variants and other risk factors including co-morbidities, lifestyle and family history may contribute to the risk of vitamin D insufficiency. For additional information on other risk factors please see the accompanying CPMC research report.

Risk interpretation based on Coriell's Vitamin D Insufficiency Risk Algorithm Version 1 (September 1, 2015)

Test Limitations

DNA-based testing is highly accurate, however there are many sources of potential error including: mis-identification of samples, rare technical errors, trace contamination of PCR reactions, and rare genetic variants that interfere with analysis. There may be other variants, not included in this test, that influence the risk to develop vitamin D insufficiency. This test is not diagnostic for vitamin D insufficiency and cannot rule out the risk of developing vitamin D insufficiency in the future. Risk estimates are based on current available literature (see references). This test or one or more of its components was developed and its performance characteristics determined by the Coriell Institute for Medical Research. It has not been approved by the Food and Drug Administration (FDA). The FDA has determined that such approval is not necessary. The Coriell Institute is regulated under the Clinical Laboratory Improvement Amendments (CLIA) of 1988 as qualified to perform high-complexity testing.

Test Methodology

Saliva samples were collected using Oragene DNA Collection Kits (DNA Genotek) and DNA was extracted manually according to the manufacturer’s instructions or automatically using a DAdvance Kit (Agencourt). Purified DNA was quantified using UV absorbance at 260 nm. Five hundred nanograms of the resulting DNA from each sample were used as template in the Affymetrix Genome-Wide Human SNP Nsp/Sty 6.0 GeneChip assay. Data analysis was performed using Affymetrix Genotyping Console software.

Electronically signed by

Marie Hoover, PhD, Laboratory Director

This clinical report only includes data generated in the CLIA approved genotyping laboratory, for additional information please see the CPMC research report.

References