Report Contents

1. Coriell Personalized Medicine Collaborative Research Study Report. This report includes all data included in the clinical report as well as supplemental interpretations and educational material. This research report is based on Questionnaires Finalized on 08/01/2010

2. Clinical Report. This report was generated and approved by Coriell's CLIA certified genotyping laboratory.
**CPMC Research Study Report**

Name: NATAILIE DEMO  
Gender: Female  
Date of Birth: Date Collected: 11-30-2016  
Coriell ID: DEMONAT  
Lab Accessioning Number: DEMONAT  
Ordering Physician: Dr. Edward Viner  
Date Received: 11-30-2016  
Date of Report: 12-01-2009

**Risk of Developing Prostate Cancer Based on:**

- CPMC Prostate Cancer Variant 1 (rs16901979)
- Family History

The CPMC is a research study investigating the utility of personalized genomic information on health and health behavior. Most common health conditions are caused by an interaction between multiple genetic variants and non-genetic risk factors such as lifestyle and environment. The genetic variant risk in this report is based on one genetic variant, but does not represent your complete genetic risk for prostate cancer. These results were generated as part of this research study in a CLIA-approved laboratory.

More information about the study, how to interpret CPMC results, and how we calculate risk is available on our website http://cpmc.coriell.org or by contacting our genetic counselor. Participants may schedule an appointment with our board-certified genetic counselor through the web portal by clicking on "request an appointment". Our genetic counselor also can be reached by email at cpmcgc@coriell.org or by phone at 888-580-8028.

This research report includes all data included in the clinical report as well as supplemental interpretations and educational material. Please see the report that follows for the official clinical report.
Because you are female, you cannot develop prostate cancer. Therefore, risk estimates will not be displayed. However, your genetic variant result may be informative for your male relatives (father, brothers, and sons).
Women cannot develop prostate cancer; therefore women will not receive risk estimates for prostate cancer. Your genetic variant result may be informative for your male relatives (father, brothers, and sons). Men with 1 or 2 copies of this risk variant are more likely to develop prostate cancer than men with 2 copies of the non risk variant.
Prostate Cancer - Variant #1 (rs16901979)

We all have 2 copies of every gene, one from each of our parents. Each copy may have small changes called genetic variants. Some genetic variants are associated with an increased risk of disease. Some genetic variants are associated with a decreased risk of disease.

Having one or two copies of this variant increases your risk for prostate cancer.

How Common Is This Variant?
Non-Risk Variant = C    Risk Variant = A

CC - 44 in 100 people have 2 copies of the non-risk variant

CA - 51 in 100 people have 1 copy of the non-risk variant and 1 copy of the risk variant

AA - 5 in 100 people have 2 copies of the risk variant

This frequency is based on data from an African American population.

Gene: This variant is not found within a known gene.    Chromosome: 8q24.21
Prostate cancer can be caused by both genetic factors and non-genetic (or environmental) risk factors.

It is estimated that non-genetic factors (like age and ancestry) account for about \textbf{58\%} of the risk of prostate cancer.

It is estimated that \textbf{42\%} of the risk for prostate cancer is based on \textbf{genetic} risk factors. This estimate accounts for both known and unknown gene variants.

There are many different genetic and non-genetic risk factors that contribute to the risk of prostate cancer. Because you are female, you cannot develop prostate cancer. Therefore, risk estimates will not be displayed. However, your genetic variant result may be informative for your male relatives (father, brothers, and sons).
Prostate cancer only occurs in men. Age and ancestry contribute to the risk of prostate cancer.

Estimated Prevalence of Prostate Cancer in U.S. Males from 1992-2010

- Caucasian
- African American
- Asian/Pacific Islander
- Hispanic

Proportion of U.S. Males

Age Group (years)
Limitations

Prostate Cancer

- This result alone does NOT diagnose prostate cancer. Prostate cancer must be diagnosed by your health care provider.
- This result does NOT mean that you have or will absolutely develop prostate cancer.
- This result does NOT mean that you will not develop prostate cancer in the future.
- This result ONLY assesses your risk for developing prostate cancer due to the factors presented in this report and does not mean that other genetic variants or risk factors for prostate cancer are present or absent.
- Personal risk factors, such as age, family history or lifestyle, may have a greater impact on your risk to develop prostate cancer than any individual genetic variant.
- Risk estimates are based on current available literature.
- Although rare, it is possible that you may receive an incorrect result; 100% accuracy of reported results cannot be guaranteed.
- Occasionally there may be a specific variant on a gene chip that is not able to be read or interpreted. In this case you will not receive a result for that variant. It is expected that you will receive results for about 95% of variants approved by the ICOB.
- Relative risks used to estimate risk of disease for CPMC participants are based on groups of people with the same risk or protective factor as the individual CPMC participant. In some cases, the relative risk is estimated based upon an odds ratio and known or assumed disease prevalence.
- Separate risk estimates for each risk or protective factor have been given. Risk or protective factors may be related to each other and risk estimates cannot be combined.
- Risk information for non-genetic factors is based on information you provided in your medical, family, lifestyle questionnaire. If you did not provide answers or if you answered "do not know", risk estimates for some factors may not be available.
- Risk information for non-genetic factors is based on information you provided in your medical, family, lifestyle questionnaire and may not be reflective of your current risk if any of these factors have changed. You will be given the opportunity to update your medical, family and lifestyle questionnaire responses periodically.
- Every effort will be made to provide you with risk information based on your reported race/ethnicity. However, data may not be available for all races/ethnicities for all risk factors. Please see your individual results to determine which race/ethnicity the data given is based on.
- For some risk factors data may be provided by gender. Every effort will be made to provide you with risk information based on your reported gender. However, when risk data is not available for both genders, risk results for the available gender will be provided.
Methods

Prostate Cancer

This condition and genetic variant(s) were approved by the Informed Cohort Oversight Board (ICOB)

Test Methodology
Saliva samples were collected using Oragene DNA Collection Kits (DNA Genotek) and DNA was extracted manually according to the manufacturer's instructions. Purified DNA was quantified using UV absorbance at 260 nm. Five hundred nanograms of the resulting DNA from each sample were used as template in the Affymetrix Genome-Wide Human SNP Nsp/Sty 6.0 GeneChip assay. Data analysis was performed using Affymetrix Genotyping Console software.

See CPMC Technical Paper for genetic variant selection and reporting methodology.

[Risk interpretation based on Coriell's Prostate Cancer Risk Algorithm Version 1 (July 7, 2009)]


### Clinical Report for Prostate Cancer Genetic Variant 1 (rs16901979)

**Name:** NATHALIE DEMO  
**Sample Type:** Saliva  
**Race/Ethnicity:** Black or African-American  
**Gender:** Female  
**Date of Birth:**  
**Date Collected:** 11-30-2016  
**Coriell ID:** DEMONAT  
**Date Received:** 11-30-2016  
**Lab Accessioning Number:** DEMONAT  
**Date of Report:** 12-01-2009  
**Ordering Physician:** Dr. Edward Viner

<table>
<thead>
<tr>
<th>Name of Gene/Region</th>
<th>Interpretation</th>
<th>Reference Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>This variant is not found within a known gene.</td>
<td><strong>Women cannot develop prostate cancer; therefore risk estimates are not available for women.</strong></td>
<td>AA: CC</td>
</tr>
</tbody>
</table>

**Chromosomal Location:** 8q24.21

**Variant tested** | **Result** | **Reference Genotype** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rs16901979</td>
<td>AA</td>
<td>CC</td>
</tr>
</tbody>
</table>

**Interpretation:** This result may be informative for male relatives (father, brothers, and sons). Men with this result are 50% more likely (or 1.50 times as likely) to develop prostate cancer than men with no copies of this variant.

**Other Risks:** Other genetic variants and other risk factors including co-morbidities, lifestyle and family history may contribute to the risk of prostate cancer. For additional information on other risk factors please see the accompanying CPMC research report.

---

**Test Limitations**

DNA-based testing is highly accurate, however there are many sources of potential error including: mis-identification of samples, rare technical errors, trace contamination of PCR reactions, and rare genetic variants that interfere with analysis. There may be other variants, not included in this test, that influence the risk to develop prostate cancer. This test is not diagnostic for prostate cancer and cannot rule out the risk of developing prostate cancer in the future. Risk estimates are based on current available literature (see reference). This test or one or more of its components was developed and its performance characteristics determined by the Coriell Institute for Medical Research. It has not been approved by the Food and Drug Administration (FDA). The FDA has determined that such approval is not necessary. The Coriell Institute is regulated under the Clinical Laboratory Improvement Amendments (CLIA) of 1988 as qualified to perform high-complexity testing.

**Test Methodology**

Saliva samples were collected using Oragene DNA Collection Kits (DNA Genotek) and DNA was extracted manually according to the manufacturer’s instructions or automatically using a DNAdvance Kit (Agencourt). Purified DNA was quantified using UV absorbance at 260 nm. Five hundred nanograms of the resulting DNA from each sample were used as template in the Affymetrix Genome-Wide Human SNP Nsp/Sty 6.0 GeneChip assay. Data analysis was performed using Affymetrix Genotyping Console software.

**Electronically signed by**

Marie Hoover, PhD, Laboratory Director

This clinical report only includes data generated in the CLIA approved genotyping laboratory, for additional information please see the CPMC research report.

**References**